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are seen to have a repeating cycle. However, the inclusion of
friction induces a decaying mechanism that results in a better
agreement with the experimental results. (Compare the dashed
and the dashed-dotted lines.)

Conclusions

The head-on reflection of a planar shock wave from a
rubber wall experiencing a uniaxial strain loading mode that
was investigated numerically during a previous study' was
compared with experimental results that were obtained re-
cently.

It has been demonstrated that Kistler piezoelectric pressure
transducers could be used to record stresses in rubberlike
materials, although they originally were designed to measure
pressures in fluids.

In view of the previous remark, the comparison of the
actual experimental results with the numerical simulations
revealed a very good agreement as far as the durations of the
stress pulses are involved and fairly good agreements as far as
the shapes and peak values of the stress pulses are concerned.

Finally, the conclusions from the numerical investigation®
that rubberlike materials cannot be used to reduce head-on
reflecting shock wave loads on structure have been verified
experimentally. Both the numercial and the experimental in-
vestigations clearly indicate that the presence of the rubber
results in a significant amplification of the pressure acting on
the endwall of the shock tube. Consequently, experimental
setups similar to that shown in Fig. 1 could be used as pressure
amplifiers.
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1. Introduction
ARGE deformation, three-dimensional analyses of axisym-
metrical structures can be costly in spite of the relatively sim-
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ple geometry. One approach to efficiently analyzing such prob-
lems is to use axisymmetric elements that are formulated to allow
for nonaxisymmetric deformations. A cylindrical coordinate sys-
tem in the context of a total Lagrangian formulation seems appro-
priate for these elements.

Although many programs use cylindrical, spherical, or local
coordinate systems for input convenience, the underlying formula-
tion is usually based on Cartesian reference systems.> Although
significant efforts have been devoted to cylindrical formulations,
most efforts have been restricted to small displacements*> or shell ele-
ments.&“

This Note discusses a Lagrangian finite element formulation in
general orthogonal curvilinear coordinate systems, including the
basic components describing Lagrangian strains and strain incre-
ments and the procedure for integrating these into the virtual work
equation. This generalized formulation is applied to a solid cylin-
drical finite element that is demonstrated at the end of this Note.
Although developed to address structural problems in the oil
industry, the formulation developed herein is general with much
broader application potential.

II. Lagrangian Strains in Curvilinear Coordinates

Lagrangian formulations use the Green-Lagrange strains be-
cause they have the desirable characteristic of remaining invariant
under rigid-body rotation. Many authors express Green-Lagrange
strains in terms of the deformation gradient in general curvilinear
or orthogonal curvilinear coordinate systems.!'>-* The develop-
ment that follows is based largely on Malvern’s discussion.!? In
orthogonal coordinate systems, the covariant and contravariant
components are coincident, and so only one component type needs
to be considered. Therefore, the convention of summation for
repeated subscripts is used in this Note.

The spatial components of the material vector may be expressed
in terms of the material components through the deformation gra-
dient tensor Fp,:

hk ox,
ds, = = v ds, =F, ds, (1)

This can be substituted into the expression for the Green-
Lagrange strains, giving

dx, dx
B, - [(h) « 9%, 6,-] @
2 HHJaXBX

In finite element applications the strains must be expressed in
terms of the displacement. field. This requires appropriate dis-
placement measures to be defined. Although Cartesian scale fac-
tors are independent of location and displacements, in curvilinear
coordinate systems location-dependent scale functions add consid-
erable complexity. At this point most authors simplify their dis-
cussions to infinitesimal strain formulations,'>!3 so that physical
displacements can be used as field variables, and the scale func-
tions can be assumed to be constant.

Defining physical displacements that include deformation-de-
pendent scale functions is more difficult and unnecessary. Instead,
coordinate displacements can be used as the field variables. This
approach was used by Truesdell and Toupin'* for Lagrangian
strains in general curvilinear coordinate systems; however, it has
not previously been used in incremental form for a finite element
formulation. The displacements are defined simply as

u, = x,~- X, : 3)

where | = r,0,z ina oylindrical system.
The strains can then be expressed in terms of the displacement
field and scale functions:

ij =

1 2 2
(h U +h u; +h ukju,” h akjski—aij) “@)
2H'H’

The displacement gradient components in the first three terms
are similar to the usual Cartesian expressions. The last two terms
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are pure scale factor components describing, for example, the hoop
strain produced by pure radial expansion.
In incremental form, the strains are separated into parts corre-
“sponding to the order of displacement increment:

—_— 14 ” ”r e
AE; = Ag, +Ael, + Ael + Ae7 +Ae’y 3)

in which

L 2 .2
2H'H/Ae,; = (h’Auj,i+h’Aui,j)+ (2h°AK'8,8,)  (6a)
iryj ’ 2
2H'HAE], = b (u, Ay i+ Auy u, )

+2 (WA, + h'AR W, + K AR w ) (6b)

2H'HAE] = h*Au, Auy  + AR U, + ARy

+ AR Ay g +8,8,) + 2 [WAW AW, + AR Au, |

+ HAR (uy Au, +uy Au, )] (60)

The infinitesimal strain component A€ does not depend on the
displacement gradient. The second term A€’ is also a first-order
strain increment component but is nonlinear because it depends
on the displacement gradients at time ¢. The remainder of the
terms are second-, third-, and fourth-order strain increment com-
ponents. The first- and second-order terms are used in the finite
element stiffness formulation. Higher order terms are not shown
because they are ignored in the linearization of the equations and
do not arise in the equilibrium equations. Thus, the error intro-
duced by the linearizing assumption can be eliminated by equilib-
rium iterations.

ITI. Finite Element Equations
The linear stiffness matrix is integrated using the operator
matrix that relates strains to the displacement field. The first-order
strain increments are therefore given by

{Ae} = [b] {Au}, {Ae’} = [6] {Au} Q)
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Fig.1 Load vs harmonic displacements for an asymmetrically loaded
cap at the point of maximum displacement.

where [b] and [b’] are differential operator matrices, {A€} and
{Ag’} are vectors containing the first-order strain components, and
{Au} is a vector of displacement field functions.

Although the displacement gradient components of [b] and [b’]
are simply scaled versions of those of Bathe,! the scale function
components are not seen in the common Cartesian formulations.
These two components can be shown separately:

(6] = [d] + [A], (6] = [d']+[#] ®

where [d] and [d'] are the displacement gradient components, and
[4] and [A’] are the scale function components. Use of the [b]
matrix in the stiffness matrix and equilibrium evaluation is shown
by Bathe.!

The second-order strain increments lead to the geometric or
nonlinear stiffness matrix. These increments can be separated into
subsets in the same manner used with A€ and Ag’. However, three
subsets can be defined here: second-order displacement gradient
components, second-order scale function components, and cross -
terms. Three components of the geometric stiffness operators [kg]
matrix are correspondingly produced:

k] = [K°]+ (K71 + ("] ©)

IV. Sample Application
This finite element formulation was applied in an axisymmetric
element in a cylindrical coordinate system with coordinates r, z,
and 0 and corresponding scale functions of 1, 1, and . The hybrid
displacement field of Zienkiewicz? with Fourier decomposition
was used with coordinate rather than physical displacement com-
ponents:

N N
P f
u= 3 P(RZ)Y u}’ cos (n6) + uf sin (n6) 10)
n=1 f=0

where P, (R, Z) are the usual polynomial interpolation functions,
N, and Ny are the number of nodes and harmonics, and uf’{c |s) are
nodal harmonic displacement amplitudes for node # and Fourier
number f, with ¢ and s denoting cosine and sine terms, respec-
tively. The element is explored in detail by Kaiser,!’ and two sam-
ple results are presented here.

The axisymmetric cap under an asymmetric load shown in Fig.
1 is discussed by Chan and Firmin® and Chan and Trbojevic®!° in
the context of a Fourier-based finite element analysis. Figure 1
compares the harmonic displacement amplitudes at the maximum
displacement location for the solid formulation with the shell-
mixed formulation of Chan and Trbojevic. Although the initial
stiffnesses compare well, the collapse load given by Chan and
Trbojevic’s formulation is significantly higher. It is suspected that
small displacement kinematic assumptions, the stress distribution
modeled through the shell thickness, and the coarse axisymmetric
mesh employed by Chan and Trbojevic contribute to this higher
buckling load. The results also illustrate the harmonic coupling in
nonlinear problems. Although there is no loading component in the
2© harmonic, there is a significant 20 displacement component.
The coupled displacement becomes particularly pronounced as the
buckling load is approached.

Figure 2 shows displacement results for a tube column modeled
with a slightly eccentric axial load compared with the linearized
beam-column analytical solution. The lateral displacements remain
relatively small until the Euler buckling load is approached, at
which point the displacements increase drastically at the end.
Transverse displacements vs axial load curves are plotted for anal-
yses using different numbers of Fourier terms. The results show
excellent agreement with the analytical solution below the collapse
load, demonstrating the effectiveness of the formulation. However,
limitations in the element displacement field cause the solution to
diverge as the lateral displacements increase. The effective range
of displacement can be improved by increasing the number of har-
monics modeled. However, a more refined element displacement
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Fig. 2 Elastic beam column test case.

field should be defined, considering coordinate displacements to
make such an element more generally applicable.

V. Conclusions

A new finite element formulation has been developed in terms
of general orthogonal curvilinear coordinate systems. The formu-
lation has been demonstrated by application to a basic cylindrical
element using cylindrical displacement components and Fourier
decomposition for the circumferential displacement field. The ele-
ment accurately models nonlinear behavior within the effective
range of element displacements. Development of a refined element
displacement field is the focus of continued research to develop a
general use axisymmetric element to model nonlinear three-
dimensional behavior.
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